John F. Kennedy Space Center's **Remediation Program** Perspective on 25 Years Of **Challenges, Innovations, and Progress**

Michael J. Deliz, P. G. Remediation Program Manager John F. Kennedy Space Center

Presentation Outline

- Site Background and History
- Staff
- Remediation Program
- **•** 1994
- Challenges
- Innovations
- Progress
- Case Studies
- Questions

Kennedy Space Center

- Location
 - Kennedy Space Center (KSC) is located within the Merritt Island-Cape Canaveral-Merritt barrier island complex
- Area and Land Use
 - > 140,000 acres (4,750 acres for Space Center operations)
 - Merritt Island National Wildlife Refuge
 - Created as a buffer zone for NASA launch activities
 - Managed by the U. S. Fish and Wildlife Service
 - > 500 species, 16 Federally endangered
 - Canaveral National Seashore
 - Managed by the National Park Service

Kennedy Space Center Geology

Kennedy Space Center

- Topographic relief is slight (sea level to 20 feet on Recent dunes)
 - Sand ridges and swales
- Lithology is dominated by varying amounts of finegrained sand, medium sand with shell fragments, fine sand with shell fragments, fine-silty sand, sandy clay with silt and shell fragments to approximately 120 feet below land surface (BLS) – Miocene to Recent

Eocene carbonate bedrock at approximately 150 feet BLS

Depth to groundwater (3-6 feet BLS)

- Groundwater classified as potential drinking water (G-II) based upon total dissolved solids
- Dynamic interaction of groundwater and the surficial geology - wetlands represent ~¼ KSC property

Aerial View of the LC39 Area of KSC

- NASA's primary launch operations Center
- Construction began in the 1960's to support the Apollo Program
- Apollo Program (1967 1972)
- Skylab Program (1973 1974)
- Space Shuttle Program (1981 – 2011)
- International Space Station flight hardware processing and final checkout

- Launch Services Program
 - Manages unmanned NASA missions
- Commercial Crew Program
 - To provide access to the International Space Station
 - SpaceX Crew Dragon
 - Boeing CST 100 (Starliner)
- Space Launch System
 - NASA's next generation heavy lift rocket
 - Ground processing and support for Orion and SLS
 - > Artemis Program

- Multi-User Spaceport
 - SpaceX operates LC39A processing and launch
 - Boeing operations in the Orbiter Processing Facilities
 – Starliner & X37
 - Blue Origin New Glenn
 - OneWeb satellite manufacturing and processing
 - Space Florida operates the Life Sciences Support Building and the former Shuttle Landing Facility
 - Northrup Grumman OmegA – MLP3, VAB, LC39B

- Spaceport Integration & Services Directorate
 - Medical and Environmental Services Division
 - Environmental Assurance Branch
 - Remediation Group
- "To provide environmentally unencumbered lands for NASA Programs and tenants"
- Remediation Group
 - Michael J. Deliz, P.G., Remediation Program Manager
 - Anne M. Chrest, Remediation Project Manager
 - Lindsay A. Morgan, Remediation Project Manager
 - Ryan P. O'Meara, Remediation Project Manager
 - Dinh X. Vo, Remediation Project Manager

Remediation Program

Kennedy Space Center

Regulatory Framework

- Regulated under the Resource Conservation and Recovery Act (RCRA) and its Hazardous and Solid Waste Amendment and Florida Administrative Code (F.A.C.)
- Overseen by the Florida Department of Environmental Protection (FDEP), therefore the Program is conducted in accordance with Chapter 62-780, F.A.C.
- Toxics Substances and Control Act (TSCA) is managed by the Environmental Protection Administration (EPA) Region IV

Soil Contamination

- Common contaminants
 - Polychlorinated biphenyls (PCBs) - primary sources were painted structures and transformers
 - Metals lead, copper, barium, arsenic, cadmium, chromium – various sources
 - Polycyclic Aromatic Hydrocarbons (PAHs) various sources
 - Dioxins/furans often associated with PCBs
 - Total petroleum hydrocarbons
 - Volatile organics compounds
 shallow source areas

Groundwater Contamination

Kennedy Space Center

- Most common contaminants in groundwater are chlorinated volatile organic compounds (CVOCs)
 - Trichloroethene (TCE)
 - Used for the precision cleaning of spaceflight equipment and metals degreasing
 - Cis-1,2-dichloroethene
 - Vinyl Chloride
 - Trans-1,2-Dichloroethene
 - Tetrachloroethene
- Other contaminants
 - Trichlorfluoromethane
 - Metals lead and antimony
 - Petroleum compounds PAHs and Total petroleum hydrocarbons

> Ammonia

Kennedy Space Center

2 Billion less people on the planet

- Michael and Jessica were the most popular names for newborns in the United States
- Sports World
 - Florida State University won its 1st National Championship
 - Buffalo Bills lost their 4th straight Super Bowl
 - Figure skater Nancy Kerrigan "injures" her knee
 - Major League Baseball went on strike and there was no World Series

Entertainment

- Movie tickets averaged \$4
- Forest Gump and The Lion King were released
- Schindler's List won the Academy Award for Best Picture
- Barney the Dinosaur and Friends premier on network television

Kennedy Space Center

There were no Soil Cleanup Target Levels

- Soil impacts at petroleum sites under Chapter 62-770, F.A.C. were delineating "excessively contaminated soil" utilizing organic vapor analyzer headspace
- FDEP Federal Facilities Subsection was utilizing "Soil Cleanup Goals for the Military Sites in Florida"
- Groundwater contamination was being delineated with monitoring wells
- Reports were submitted to the regulatory agencies and you waited for comments
 - Formal responses to comments.....begat additional comments
- KSC had 10 RCRA Facility Investigation Work Plans awaiting EPA review and two FDEP Central District Consent Orders

Challenges Operational Launch Facility

- Operational launch and vehicle processing facility in a National Wildlife Refuge
 - No Dig Days
 - Tortoise relocations
 - Nesting seasons
 - Weather warnings
 - Lightning

Challenges Site Inventory

- NASA's largest cleanup program (based upon # of sites)
 - EPA RCRA Facility Assessment = 1990
 - No Further Action or RCRA Facility Investigation
 - During the past 25 years KSC conducted a Center-wide review of all of its facilities, operations, and potential waste disposal practices to determine potential impacts to the environment
 - Center divided into 3 Areas for SWMU Assessments
 - Created Potential Release Locations (PRLs) = 204
 - Locations of Concern (LOCs)
 - Conducted 40 Confirmatory Sampling efforts in the past 3 years
 - > 365 total sites combined into 293 sites
 - SWMUs became parts of SWMUs
 - PRLs became SWMUs
 - Total sites with approved No Further Action (184) or Site Rehabilitation Completion Orders (33) = 217


KSC Remediation Sites SWMUs and PRLs

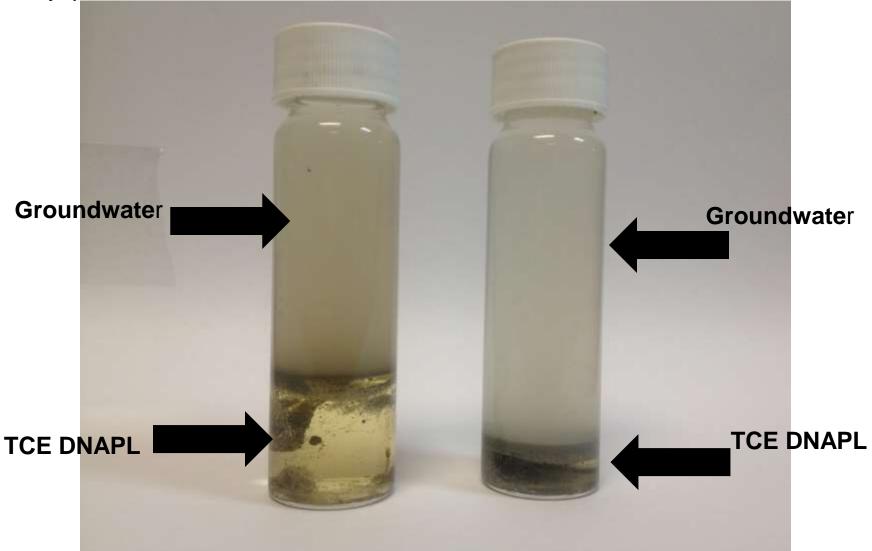
Atlantic Ocean

Investigated Site Boundary

2 J Miles

KSC Remediation Sites SWMUs and PRLs

 \mathbf{G}


Challenges Site Inventory

- Total Active Sites = 76
- Prioritization of Funding
 - Required to demonstrate progress
 - Early Days
 - Studies versus Cleanups ("paralysis by analysis")
 - Studies were considered lower priority
 - Rush to Cleanup
 - Remedy-in-Place, Final Remedy-in-Place, etc.
 - "Getting a Bean"
 - Past 15 Years
 - Pushing back on "Management/Regulatory Driven Cleanup Decisions"
 - Breaking the perception that it did not matter how contaminated a site was in the source area
 - Rush to cleanups led to oversimplified Conceptual Site Models and the potential to miss additional source areas
 - Risk-based prioritization (eliminating direct exposure issues)
 - Potential soil exposure versus no consumption of groundwater

Challenges Site Inventory

E Start

Challenges Dense Non-Aqueous Phase Liquid

Kennedy Space Center

- Launch Complex 34 TCE*
- Wilson Corners TCE* and Freon
- Hypergol Maintenance Facility North TCE* and Freon*
- Components Cleaning Facility TCE and Freon*
- Convertor Compressor Building TCE
- Mobile Launch Platform Rehabilitation Sites/VAB Area TCE
- Central Heat Plant PCE
- GSA Reclamation Yard PCE and PCBs*
- Former Drum Storage Area TCE

*visible DNAPL observed at site

Challenges Per- and Polyfluoroalkyl Substances

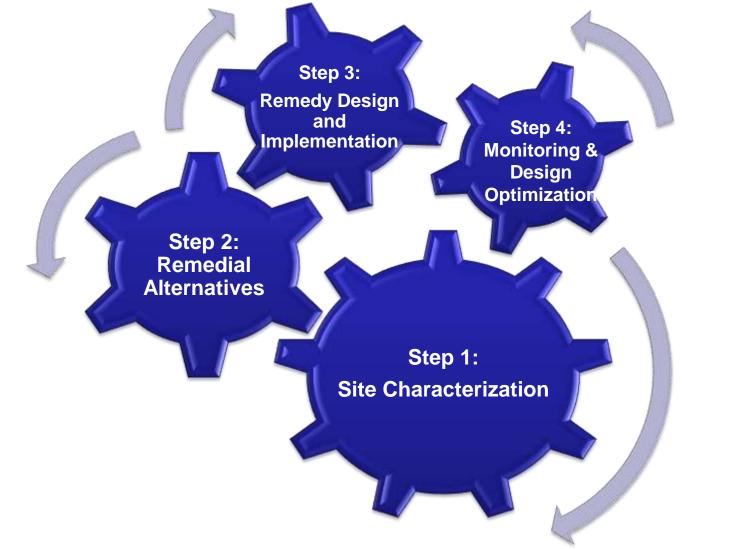
Innovations Technologies

- Innovative technology test bed
 - Biopiles
 - Air Sparging with soil vapor extraction
 - 6 Phase Heating
 - Steam Injection
 - Chemical Oxidation Potassium Permanganate
 - Bioaugmentation (KB-1[®])
 - Emulsified Zero-Valent Iron
 - Sequential Application of In-Situ Chemical Oxidation and Enhanced Bioremediation
 - Bioremediation Utilizing a Partitioning Electron Donor (Butyl Acetate)
 - Solar Powered Groundwater Recirculation Systems

Innovations Remediation Team

- KSC Remediation Team (KSCRT)
 - Comprised of NASA civil servants (5)
 - FDEP Remedial Program Manager
 - A representatives from each Consulting firm
 - Team Processes
 - Ground Rules
 - Peer review all of each others work
 - Collaborative decision making
 - Meets 1-2 days every 8 weeks to discuss site progress and make decisions on paths forward
 - Decision Process Document
 - Recipe for implementing RCRA Corrective Actions at KSC
 - Technical approach
 - Screening levels
 - Repository for KSC Reference Values
 - Templates for documents

Innovations High-Resolution Site Characterization


Kennedy Space Center =

- KSC implemented the frequent use of high-resolution site characterization (HRSC) in 2008 following the conclusion that many of the legacy sites at the Center were under assessed horizontally and vertically
 - Unidentified sources were impacting site cleanups
 - "Knife" edges both horizontally and vertically were found repeatedly at numerous sites that were under investigation at the time
 - Previous groundwater delineation efforts had no minimum distance between sampling point (horizontally and vertically)

 As a result a multi-step process was developed by the KSCRT

- Adequate site characterization (includes minimal distances)
- Participate in evaluation of remedial technologies
- Review preliminary designs
- Evaluate efficacy of interim measures

Innovations Multi-Step Engineering Evaluation Process

(

38

(11)

.

.

-

.

-

(11)

Plume Nomenclature

۲

6

0

0

.

0

Own

1

.

.

0

970

0

12

6

1

342

.

MARCH OF THE

.

6

600

.

1

.

(1)

121

0

.

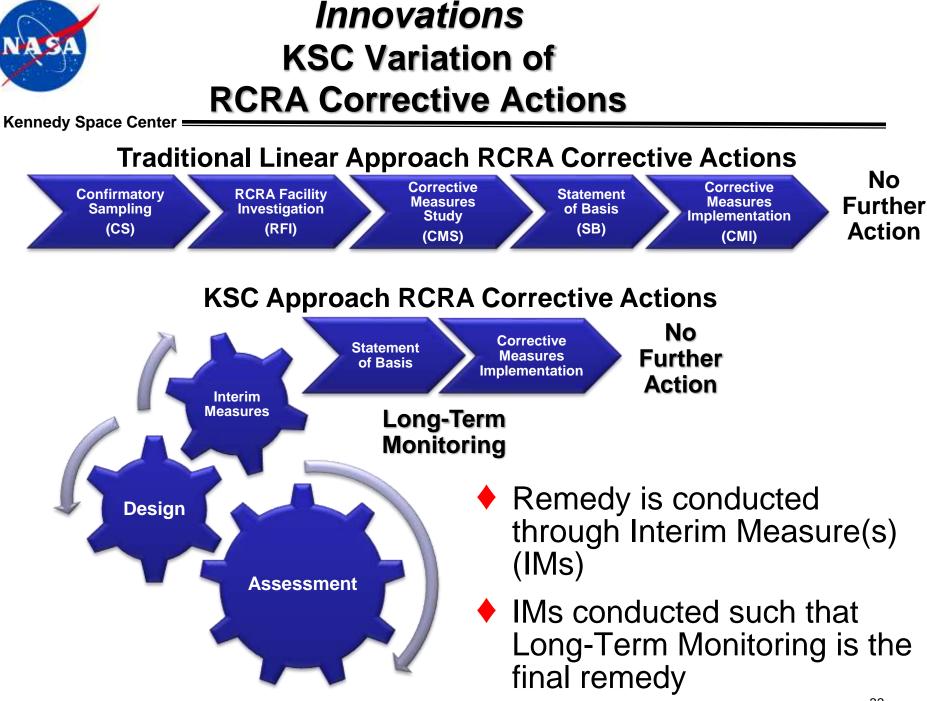
(101)

1

.

.

9

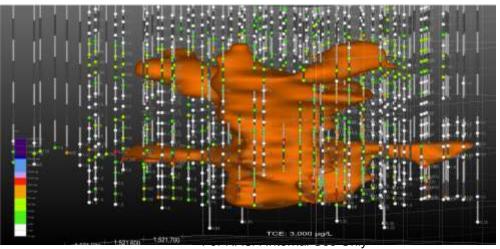

Hot Spot = 10x FDEP Natural Attenuation Default Criteria (NADC)

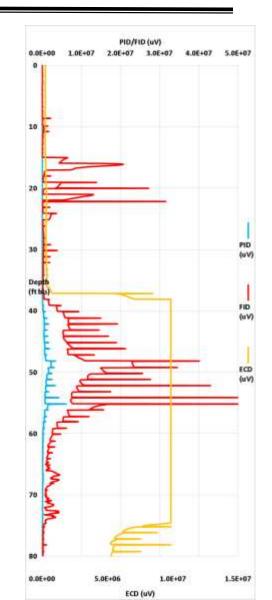
1

High Concentration Plume (HCP) Low Concentratio Plume (LCP)

0

Ser.

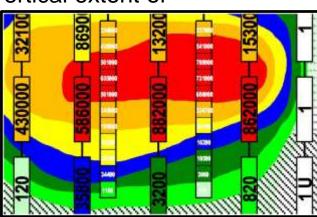



Innovations High-Resolution Site Characterization

Kennedy Space Center =

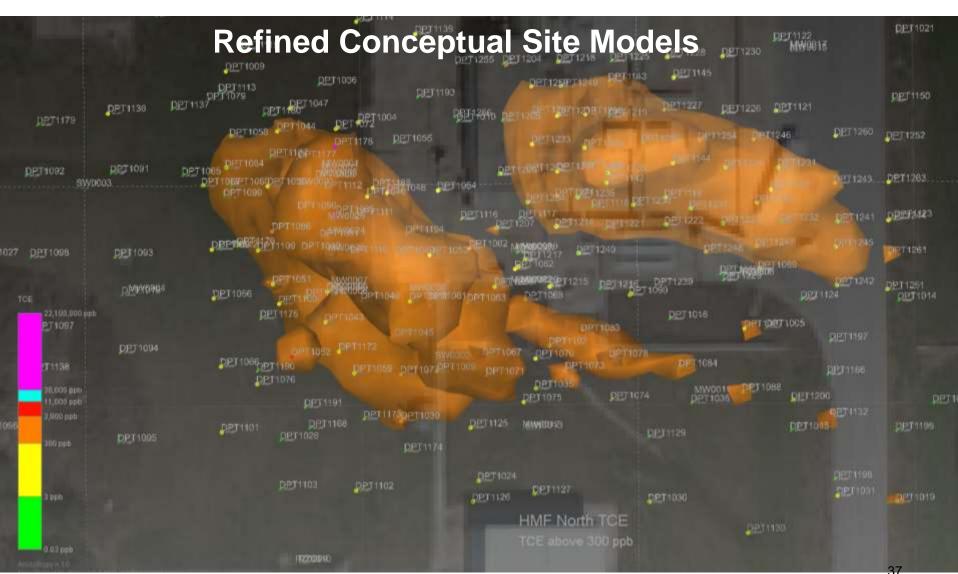
HRSC Tool Box

- Direct Push Technology (DPT) and Mobile Laboratories
- Membrane Interface Probe (MIP)
 - Confirm previous or develop new sampling intervals
- Earth Volumetric Software (EVS)
- Hydraulic Profiling Tool (HPT)
- Saturated Soil Sampling



Innovations Benefits of High-Resolution Site Characterization

- Since 2008, 24 sites have been assessed/re-assessed utilizing HRSC
 - All phases of the RCRA Corrective Action Program (RFI CMI)
- 8,500 DPT sampling points and 50,000 groundwater samples
- Refined Conceptual Site Models
 - Plume delineation and interpretation based upon DPTs
 - Higher fidelity representation of the plume morphology
 - Reduced uncertainty on the horizontal and vertical extent of contaminant distribution
 - Better understanding of the source mass distribution
 - Horizontally and vertically
 - Better understanding of treatment zones
 - Better ability to predict cleanup timeframes



Innovations Benefits of High-Resolution Site Characterization

- Refined Conceptual Site Models continued
 - Provides improved technology selection
 - Designs based upon HRSC versus monitoring wells
 - Helps reduce the risk of missing a source area and/or treating the wrong area(s)
 - Improved Budget Planning
 - Engineering estimates more accurately reflect the capital and operations, maintenance, and monitoring costs
 - Allows KSC to decide on treatment areas (source, hot spot, HCP)
 - Better engineering estimates allows more accurate budget planning in the out-years
 - Allows the implementation of a groundwater IM or a series of IMs that reach KSC's goal of transitioning to monitored natural attenuation
 - 30 groundwater cleanups (including expansions) since 2012

Innovations Benefits of High-Resolution Site Characterization

Innovations Benefits of High-Resolution Site Characterization

Kennedy Space Center

- DPTs are being used to adjust designs prior to implementation
 - Interim Measure Work Plans/Designs may be several years old
 - Hot Spots and HCPs migrate over time
 - Currently two air sparge treatment systems are being redesigned to include additional wells based upon the recently collected DPT data

DPTs have been used to determine treatment efficacy

- Easily identifies intervals that are not remediating or are cleaning up at a slower rate
 - Facilitates the potential to adjust flow rates to sparge wells
 - Identifies areas that may require treatment
- Changes in plume morphology over time with treatment
 - Plumes retreating back to source areas
 - DPTs have been determined to be more useful than performance monitoring wells

Progress Soil Cleanups

- 81 soil cleanups have been conducted at 62 sites
 - Site volumes ranged from 2 to 107,500 tons
 - Total volume of soil remediated = 281,541 tons (including 6,800 tons of soil with PCB concentrations > 50 parts per million)
 - Approximates a 2 foot dig over 50 football fields

Progress Groundwater Cleanups

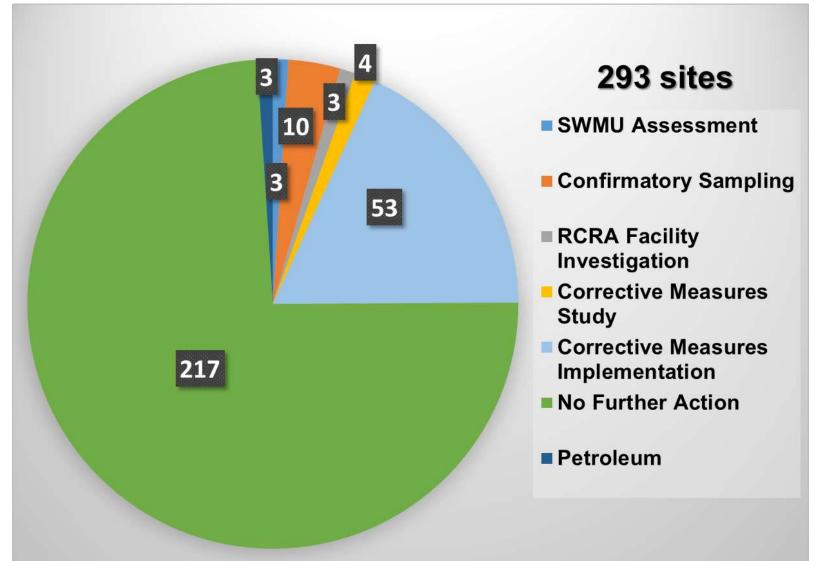
Kennedy Space Center

- Active Groundwater Cleanup Technologies Implemented at KSC
 - Air Sparging (17 and 4 Fiscal Year 2020 implementations)
 - Bioremediation (10 and 4 pilot tests)
 - Saturated Source Zone Excavation (9)
 - Pump and Treat for hydraulic containment (4)
 - Soil Vapor Extraction (4)
 - Chemical Oxidation (3 and 1 pilot test)
 - Emulsified Zero-Valent Iron (1 and 1 pilot test)
 - Large Diameter Augers with Steam (1)
 - Electrical Resistive Heating (1 and 1 pilot test)
 - Ozone Injection (1)

(#) = number of sites

Progress Groundwater Cleanups

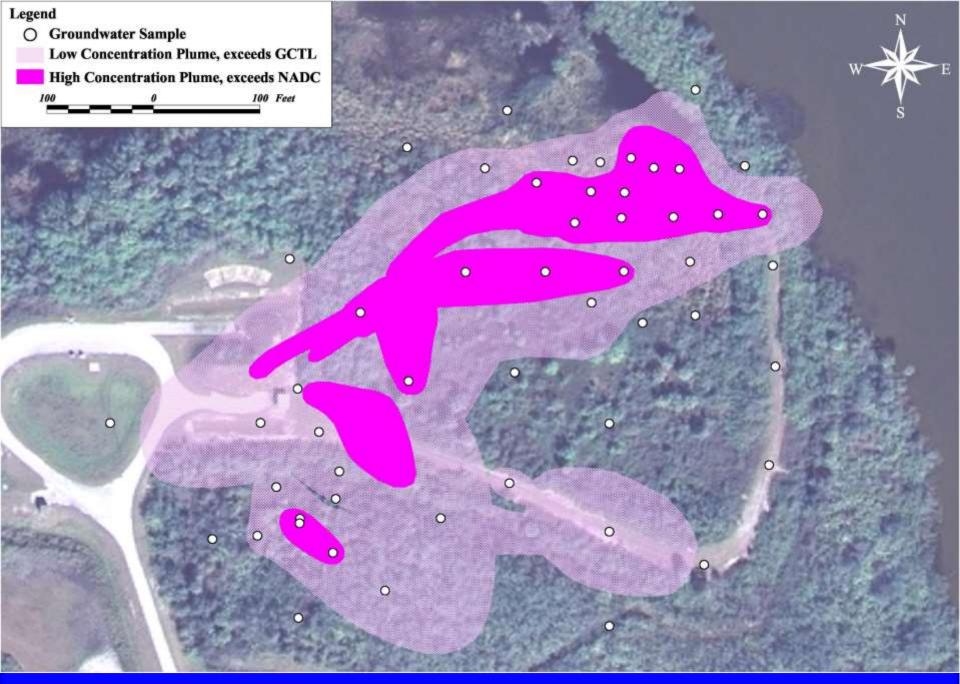
Kennedy Space Center =


- Air Sparging
 - Converter Compressor Building Area (228 + 145 = 373 ASWs)
 - Launch Complex 34 (160 + 140 = 300 ASWs)
 - Launch Complex 39B (279 ASWs)
 - Hypergol Maintenance Facility North (213 ASWs) contracted
 - Paint and Oil Locker Area (165 ASWs) contracted
 - Launch Complex 39A (140 ASWs)
 - Former Drum Storage Area (137 ASWs)
 - Central Heat Plant (125 ASWs) contracted

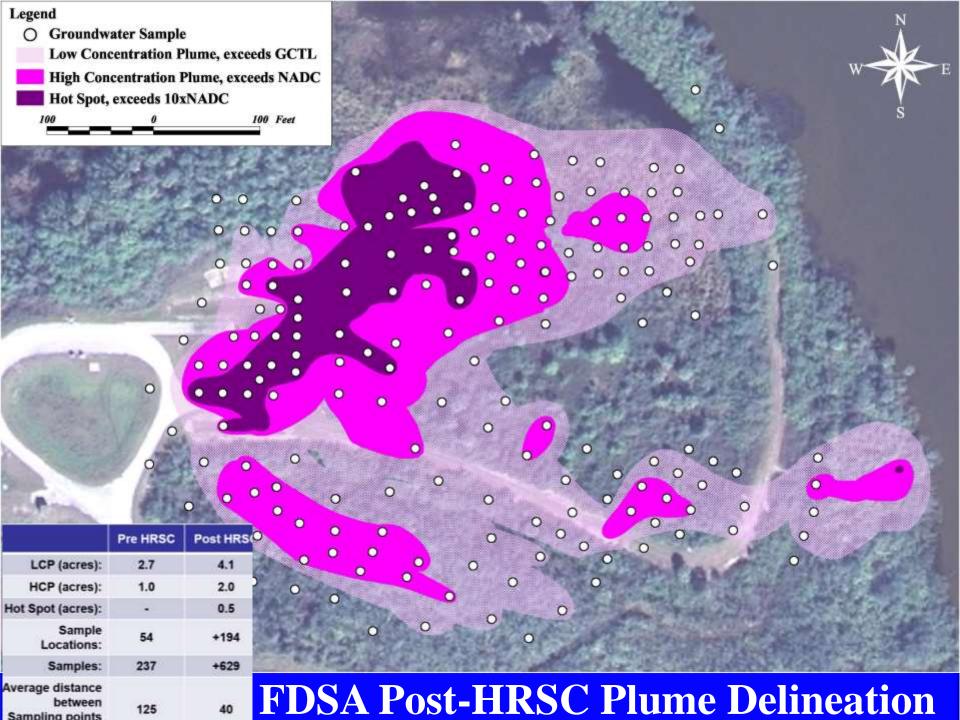
All are treating High Concentration Plumes versus Hot Spots

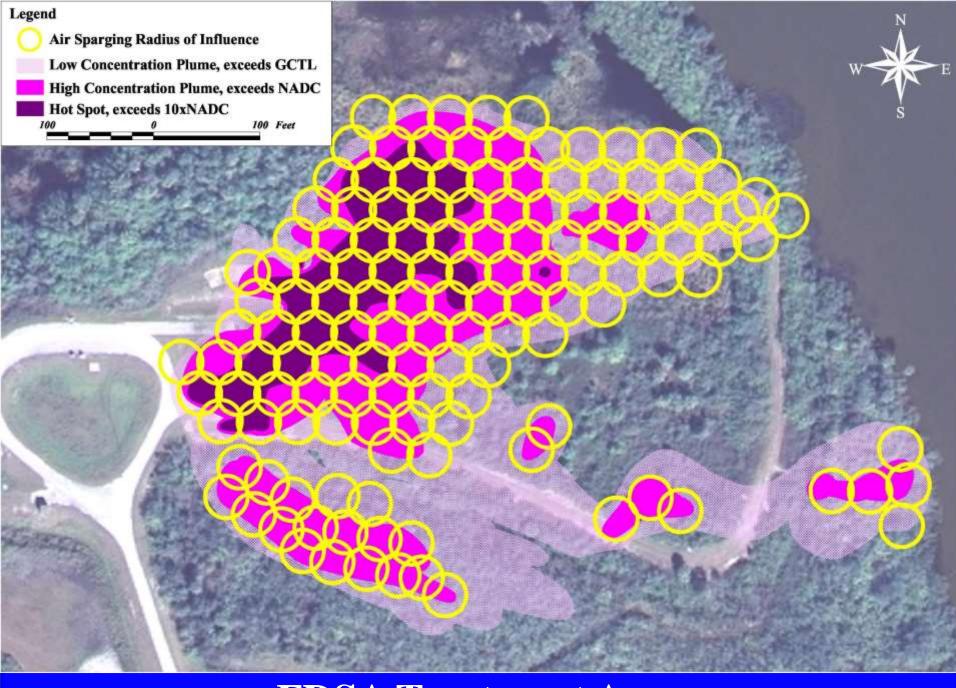
(ASWs) = air sparge wells

Progress Site Inventory

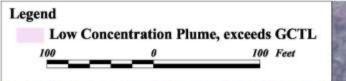


Case Studies Former Drum Storage Area


Kennedy Space Center


Former Drum Storage Area

- A RCRA Facility Investigation (RFI) was conducted in multiple phases and delineated a CVOC plume > 2.5 acres in size
- Corrective Measures Study (CMS) selected bioremediation as the preferred alternative
 - Bioremediation pilot study was implemented in 2008
 - Performance monitoring wells identified much higher TCE concentrations than were anticipated
 - KSCRT determined the plume interior was not adequately characterized
- > HRSC was initiated in 2009
 - 195 DPT locations
 - 630 groundwater samples
 - Provided a well defined treatment zone
- Remedy was re-evaluated
- Selected air sparging of the Hot Spot and HCP



FDSA Pre-HRSC Plume Delineation

FDSA Treatment Area

- TCE = 7,500 ppb to 26 ppb
- VC = 4,800 ppb to 39 ppb
- Site is in Long-Term Monitoring

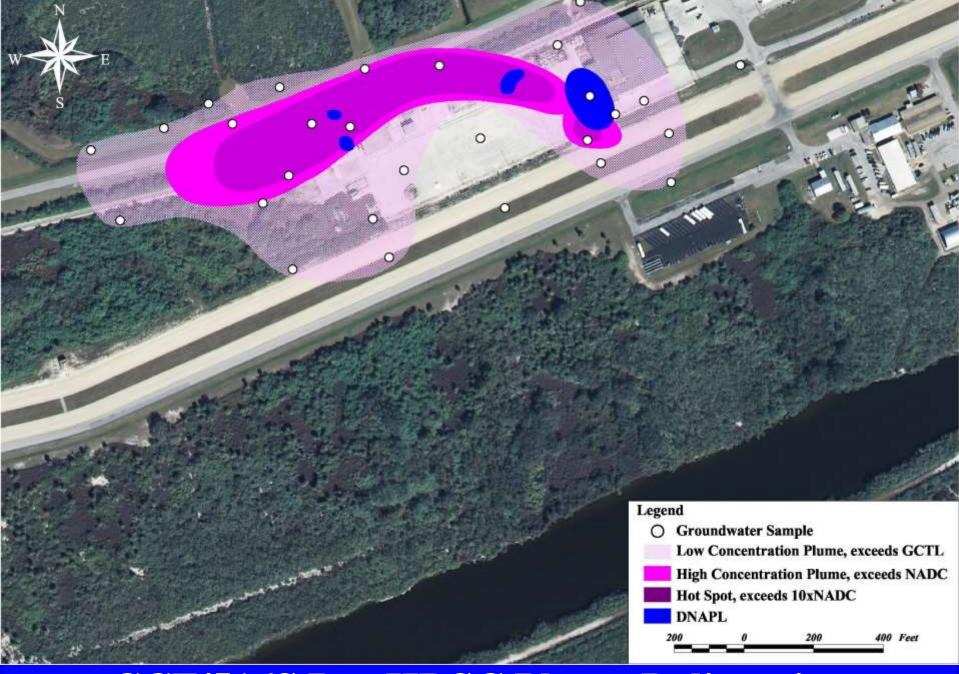
FDSA Current Plume Delineation

Case Studies Components Cleaning Facility (CCF) Area South of Facility 516 (516S)

Kennedy Space Center

CCF

- RFI delineated a CVOC groundwater plume with a TCE DNAPL source area and three areas with Freon DNAPL
- Corrective Measures Implementation (CMI) was conducted in the early 2000's
 - Excavation of shallow TCE source area
 - Air Sparge (AS)/Soil Vapor Extraction (SVE) of HCP 56 ASWs and 51 SVE points
 - Hydraulic containment
 - Performance monitoring over time showed increasing CVOC concentrations


♦ 516S

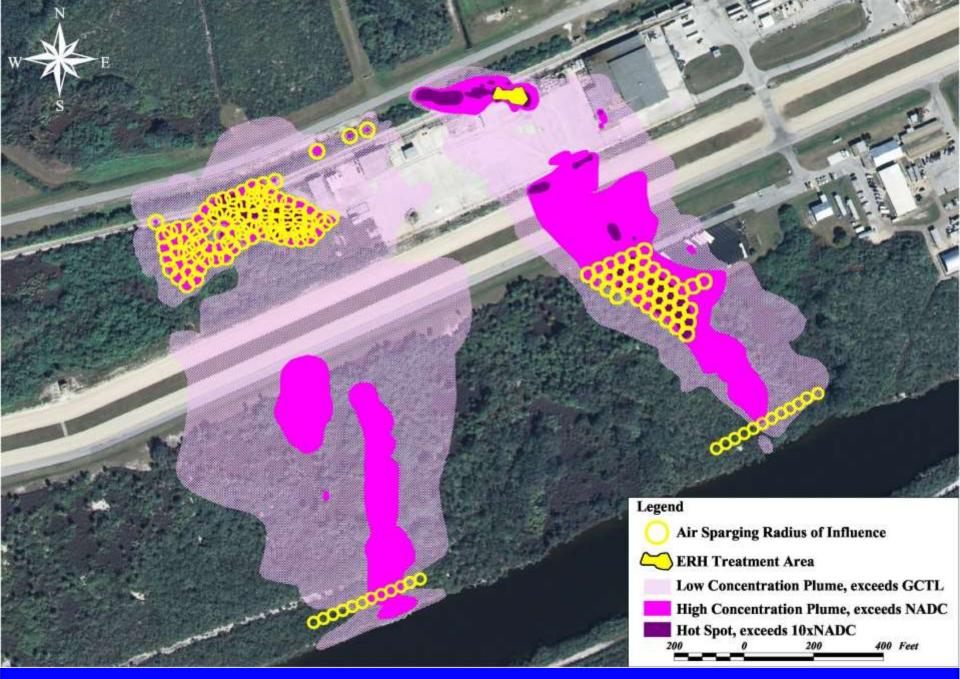
- Secondary Hot Spot identified south of the Crawlerway
 - HRSC implemented across the entire area (CCF and 516S)
 - 831 DPT locations
 - 5,153 groundwater samples

Case Studies Components Cleaning Facility (CCF) Area South of Facility 516 (516S)

- Significantly changed the conceptual site model
 - The CVOC plumes at both sites were connected and that CCF was the source
 - Provided well defined treatment zones
- Adaptive site management
 - Let site conditions dictate additional remedial actions
- Remedial alternatives were evaluated and selected to be implemented as multiple IMs over the past 8 years
 - Air Sparge Cut-Off Wall @ 516S 16 ASWs
 - Air Sparging of Eastern Hot Spot @ 516S 40 ASWs
 - Electrical Resistive Heating of DNAPL Source Zone @ CCF
 - Air Sparging of Western Hot Spot/HCP @ CCF 61 ASWs
 - Air Sparging of Eastern Hot Spot/HCP @ CCF (planned 80 ASWs)

CCF/516S Pre-HRSC Plume Delineation

Z		0 0 8 8 8	
		••••	
	Pre HRSC	Post HRSC	Legend O Groundwater Sample
LCP (acres):	14.9	34.1	
HCP (acres):	5.5		Low Concentration Plume, exceeds GCTL High Concentration Plume, exceeds NADC
Hot Spot (acres): Sample Locations:	3.3 82	1.0 +387	Hot Spot, exceeds 10xNADC 200 0 200 400 Feet
Samples:	208	+2,631	


Average distance

between

250

65

Post-HRSC Plume Delineation

CCF/516S Treatment Areas

Kennedy Space Center =

- Pad constructed between
 1959 and 1961 for the Saturn
 1 and 1B rocket programs
 - Seven launches from 1961-1968
- Remediation history
 - RFI began in 1997
 - Interagency DNAPL Consortium 1999 to 2001 – Pilot Tests
 - Chemical Oxidation with Potassium Permanganate
 - Steam Injection
 - Six Phase Heating
 - Estimated mass removal = 59,500 pounds (4,900 gallons) of CVOCs

Medical and Environmental Services Division

Kennedy Space Center =

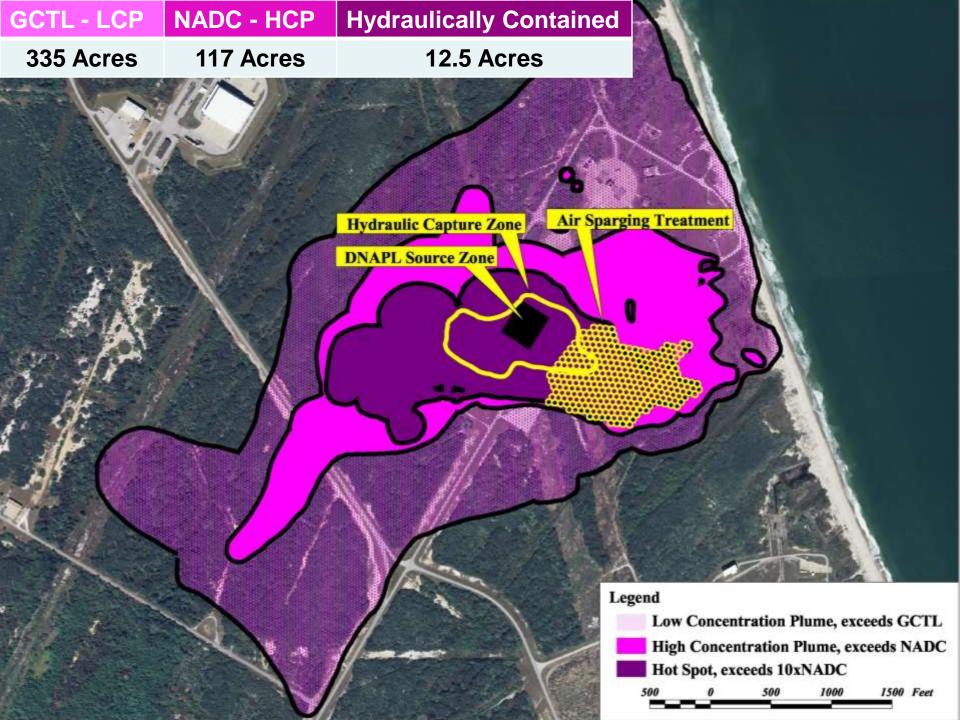
- NASA Funded Small Business Initiatives
 - Bioaugmentation (KB-1[®])
 - Emulsified Zero-Valent Iron
- Environmental Security Technology Certification Program (ESTCP)
 - Sequential Application of In-Situ Chemical Oxidation and Enhanced Bioremediation

Medical and Environmental Services Division

- Bioremediation Utilizing a Partitioning Electron Donor
- RFI Addendum and CMS estimated that over 100,000 pounds of TCE DNAPL remained in the source zone
 - Under and around the former Engineering Support Building
 - DNAPL source zone and multiple hot spots created a 330 acre CVOC plume
 - 1 mile long

Kennedy Space Center =

CMS submitted in 2008

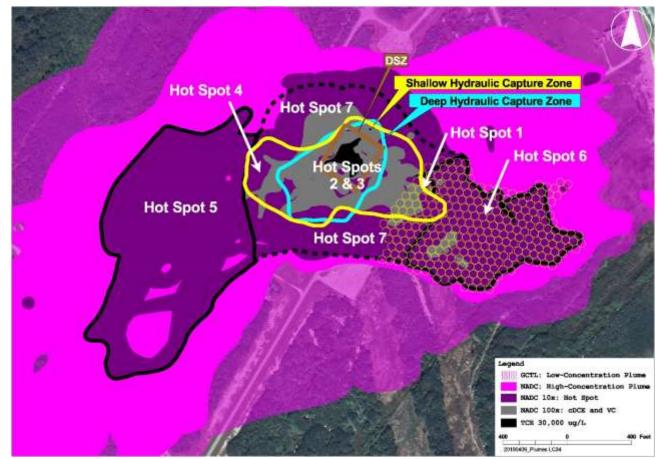

Recommended hydraulic containment of the DNAPL Source Zone and supplemental Hot Spot assessments

HRSC was implemented to support work plan design

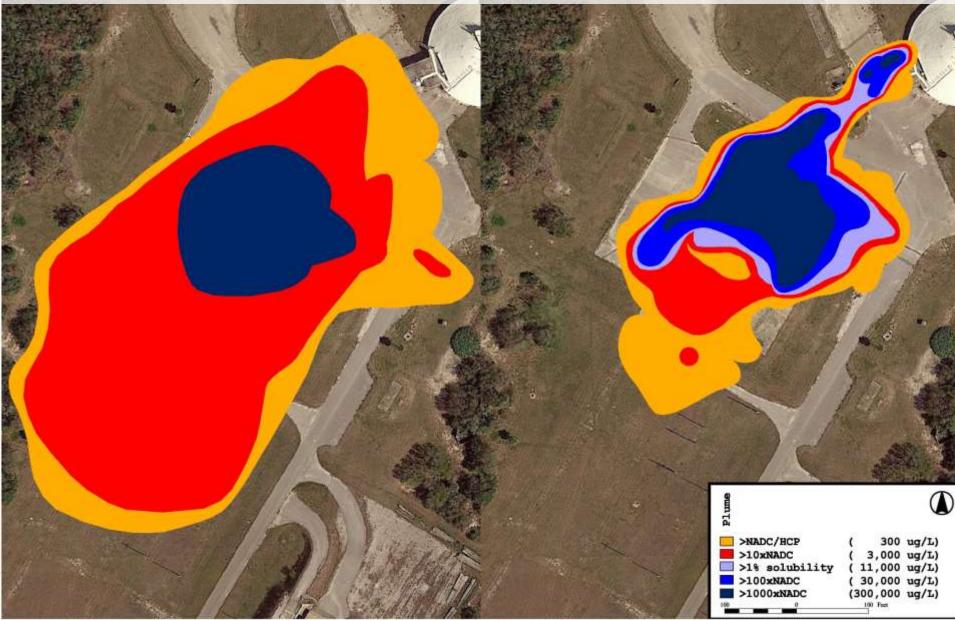
- Initial Hot Spot assessments expanded the containment zone
- Hydraulic containment implemented as an IM in 2009
 - Catalytic oxidizer (cat ox) unit destroys CVOC vapors
- Containment system expanded and cat ox refurbished in 2014 following additional HRSC
 - Secondary round of MIPs data and Hydraulic Profiling Tool (HPT) utilized for hydraulic containment treatment system optimization

• 67,000 pounds of CVOCs have been destroyed to date

> 205 million gallons of groundwater



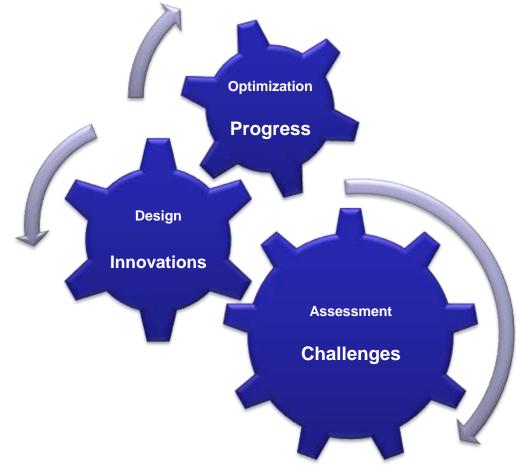
- HRSC continuously refines the conceptual model for one of the most assessed sites in the state of Florida
 - DPT = 4,250 groundwater samples from 665 locations
 - Monitoring Wells = 1,483 groundwater samples from 237 locations
 - MIPs = 52
 - Hydraulic Profiling Tool (HPT) = 8
 - MIPs/HPT Pairings = 6
 - Saturated soil locations = 1,080 from 607 locations
 - > EVS
 - Saturated Soil (DNAPL Source Zone)
 - Groundwater


- Air sparge IM was implemented in Hot Spot 6 in 2018
- Soil IMs removed 2,590 tons of PCB-contaminated soil in 2018 and 2019

DNAPL Source Zone

TCE Prior to HCS (2009)

TCE Site Characterization (2019)


Conclusions

- Spending the dollars to perform additional assessment has provided significant value to KSC's Remediation Program
 - HRSC has facilitated the development of more accurate CSMs higher level of certainty of contaminant distribution
 - Facilitates effective remedy evaluations and remediation technology selection
 - Enabled KSC to treat larger areas due to the fidelity of the assessments
 - Sites transitioning to monitored natural attenuation following 3-5 years of treatment
- KSCRT and FDEP's flexibility has allowed KSC to implement an aggressive and robust cleanup program
- Remaining DNAPL sites will continue to be problematic
- PFAS will be KSC's next big challenge

Conclusions

- Assessment/Challenges (DO NOT END WITH DESIGN)
- Design/Innovations (DO NOT END WITH IMPLEMENTATION)
- > Optimization Evaluations/**Progress** (*THROUGHOUT*)

Thanks

Kennedy Space Center

- NASA Headquarters Environmental Management Division
- KSC Remediation Project Managers
- Florida Department of Environmental Protection
 - Tim Bahr and John Armstrong

KSC Environmental Contractors

- HSW Engineering, Inc.
- > HSA Engineers & Scientists, Inc./G & E Engineering, Inc./ Conestoga-Rovers & Associates
- > Universal Engineering Sciences
- Geosyntec Consultants, Inc.
- Tetra Tech NUS, Inc.
- Levine-Fricke, Inc./Arcadis, Inc.
- Jacobs Engineering, Inc.
- Tetra Tech Inc., AECOM Technical Services, Inc., and HydroGeoLogic, Inc.

Questions

· 11 1